Browsed by
Category: Physics of the Dark Universe

Dynamical analysis of <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”inline” id=”d1e1027″ altimg=”si3.svg” class=”math”><mrow><mi>f</mi><mfenced open=”(” close=”)”><mrow><mi>Q</mi></mrow></mfenced></mrow></math>-cosmology

Dynamical analysis of <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”inline” id=”d1e1027″ altimg=”si3.svg” class=”math”><mrow><mi>f</mi><mfenced open=”(” close=”)”><mrow><mi>Q</mi></mrow></mfenced></mrow></math>-cosmology

Publication date: Available online 18 May 2023Source: Physics of the Dark UniverseAuthor(s): Andronikos Paliathanasis

Invariant Bianchi type I cosmological models and conservation laws in <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”inline” id=”d1e748″ altimg=”si9.svg” class=”math”><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow><mo linebreak=”goodbreak” linebreakstyle=”after”>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo linebreak=”goodbreak” linebreakstyle=”after”>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math> gravity

Invariant Bianchi type I cosmological models and conservation laws in <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”inline” id=”d1e748″ altimg=”si9.svg” class=”math”><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow><mo linebreak=”goodbreak” linebreakstyle=”after”>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo linebreak=”goodbreak” linebreakstyle=”after”>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math> gravity

Publication date: Available online 12 May 2023Source: Physics of the Dark UniverseAuthor(s): Divya Jyoti, Sachin Kumar

Cosmology in holographic non-minimal derivative coupling theory: Constraints from inflation and variation of gravitational constant

Cosmology in holographic non-minimal derivative coupling theory: Constraints from inflation and variation of gravitational constant

Publication date: Available online 9 May 2023Source: Physics of the Dark UniverseAuthor(s): Phichayoot Baisri, Burin Gumjudpai, Chonticha Kritpetch, Pichet Vanichchapongjaroen

Energy condition bounds on <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”inline” id=”d1e7310″ altimg=”si6.svg” class=”math”><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math> model parameters in a curved FLRW Universe

Energy condition bounds on <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”inline” id=”d1e7310″ altimg=”si6.svg” class=”math”><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math> model parameters in a curved FLRW Universe

Publication date: Available online 9 May 2023Source: Physics of the Dark UniverseAuthor(s): Ganesh Subramaniam, Avik De, Tee-How Loo, Yong Kheng Goh

Weyl type <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”inline” id=”d1e4417″ altimg=”si30.svg” class=”math”><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math> gravity observational constrained cosmological models

Weyl type <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”inline” id=”d1e4417″ altimg=”si30.svg” class=”math”><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math> gravity observational constrained cosmological models

Publication date: Available online 6 May 2023Source: Physics of the Dark UniverseAuthor(s): Rahul Bhagat, S.A. Narawade, B. Mishra