Browsed by
Category: Nuclear Physics A

Erratum to “Systematic Trends of 0<math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si1.svg” class=”math”><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo linebreak=”badbreak” linebreakstyle=”after”>+</mo></mrow></msubsup></math>, 1<math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si2.svg” class=”math”><msubsup><mrow></mrow><mrow><mn>1</mn></mrow><mrow><mo linebreak=”badbreak” linebreakstyle=”after”>−</mo></mrow></msubsup></math>, 3<math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si2.svg” class=”math”><msubsup><mrow></mrow><mrow><mn>1</mn></mrow><mrow><mo linebreak=”badbreak” linebreakstyle=”after”>−</mo></mrow></msubsup></math> and 2<math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si3.svg” class=”math”><msubsup><mrow></mrow><mrow><mn>1</mn></mrow><mrow><mo linebreak=”badbreak” linebreakstyle=”after”>+</mo></mrow></msubsup></math> Excited States in Even-Even Nuclei” [Nucl. Phys. A 1027 (2022) 122511]

Erratum to “Systematic Trends of 0<math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si1.svg” class=”math”><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo linebreak=”badbreak” linebreakstyle=”after”>+</mo></mrow></msubsup></math>, 1<math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si2.svg” class=”math”><msubsup><mrow></mrow><mrow><mn>1</mn></mrow><mrow><mo linebreak=”badbreak” linebreakstyle=”after”>−</mo></mrow></msubsup></math>, 3<math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si2.svg” class=”math”><msubsup><mrow></mrow><mrow><mn>1</mn></mrow><mrow><mo linebreak=”badbreak” linebreakstyle=”after”>−</mo></mrow></msubsup></math> and 2<math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si3.svg” class=”math”><msubsup><mrow></mrow><mrow><mn>1</mn></mrow><mrow><mo linebreak=”badbreak” linebreakstyle=”after”>+</mo></mrow></msubsup></math> Excited States in Even-Even Nuclei” [Nucl. Phys. A 1027 (2022) 122511]

Publication date: Available online 12 October 2022Source: Nuclear Physics AAuthor(s): B. Pritychenko, B. Singh, M. Verpelli

Corrigendum to “Estimating the branching fraction for the <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si1.svg” class=”math”><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo stretchy=”false”>→</mo><msup><mrow><mover accent=”true”><mrow><mi>D</mi></mrow><mrow><mo stretchy=”false”>¯</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msup><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math> decay by using the QCD factorization approach considering the effects of final state interactions” [Nucl. Phys. A 969 (2018) 196–205]

Corrigendum to “Estimating the branching fraction for the <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si1.svg” class=”math”><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo stretchy=”false”>→</mo><msup><mrow><mover accent=”true”><mrow><mi>D</mi></mrow><mrow><mo stretchy=”false”>¯</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msup><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math> decay by using the QCD factorization approach considering the effects of final state interactions” [Nucl. Phys. A 969 (2018) 196–205]

Publication date: Available online 11 October 2022Source: Nuclear Physics AAuthor(s): Behnam Mohammadi

Exotic resonance of <em>Z</em><sub><em>c</em></sub>(4100)<sup>−</sup> in <em>B</em><sup>0</sup> → <em>η</em><sub><em>c</em></sub><em>K</em><sup>+</sup><em>π</em><sup>−</sup> decay

Exotic resonance of <em>Z</em><sub><em>c</em></sub>(4100)<sup>−</sup> in <em>B</em><sup>0</sup> → <em>η</em><sub><em>c</em></sub><em>K</em><sup>+</sup><em>π</em><sup>−</sup> decay

Publication date: Available online 19 September 2022Source: Nuclear Physics AAuthor(s): Behnam Mohammadi

Algebraic solutions for <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si1.svg” class=”math”><mi mathvariant=”normal”>o</mi><mo stretchy=”false”>(</mo><mn>12</mn><mo stretchy=”false”>)</mo><mo stretchy=”false”>↔</mo><mi mathvariant=”fraktur”>u</mi><mo stretchy=”false”>(</mo><mn>2</mn><mo stretchy=”false”>)</mo><mo>⊗</mo><mi mathvariant=”fraktur”>u</mi><mo stretchy=”false”>(</mo><mn>10</mn><mo stretchy=”false”>)</mo></math> quantum phase transitions in the proton-neutron interacting boson model

Algebraic solutions for <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si1.svg” class=”math”><mi mathvariant=”normal”>o</mi><mo stretchy=”false”>(</mo><mn>12</mn><mo stretchy=”false”>)</mo><mo stretchy=”false”>↔</mo><mi mathvariant=”fraktur”>u</mi><mo stretchy=”false”>(</mo><mn>2</mn><mo stretchy=”false”>)</mo><mo>⊗</mo><mi mathvariant=”fraktur”>u</mi><mo stretchy=”false”>(</mo><mn>10</mn><mo stretchy=”false”>)</mo></math> quantum phase transitions in the proton-neutron interacting boson model

Publication date: Available online 13 September 2022Source: Nuclear Physics AAuthor(s): M.M. Hammad, Andriana Martinou, Dennis Bonatsos

Photonuclear reactions <sup>nat</sup>Ni(<em>γ</em>,<em>x</em>n)<sup>57</sup>Ni and <sup>nat</sup>Ni(<em>γ</em>,<em>x</em>n)<sup>56</sup>Ni in the energy range <em>E</em><sub><em>γ</em>max</sub> = 35–94 MeV

Photonuclear reactions <sup>nat</sup>Ni(<em>γ</em>,<em>x</em>n)<sup>57</sup>Ni and <sup>nat</sup>Ni(<em>γ</em>,<em>x</em>n)<sup>56</sup>Ni in the energy range <em>E</em><sub><em>γ</em>max</sub> = 35–94 MeV

Publication date: Available online 13 September 2022Source: Nuclear Physics AAuthor(s): O.S. Deiev, I.S. Timchenko, S.N. Olejnik, S.M. Potin, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin, V.A. Bocharov