Browsed by
Month: January 2023

Application of machine learning regressors in estimating the thermoelectric performance of Bi<sub>2</sub>Te<sub>3</sub>-based materials

Application of machine learning regressors in estimating the thermoelectric performance of Bi<sub>2</sub>Te<sub>3</sub>-based materials

Publication date: Available online 25 January 2023Source: Sensors and Actuators A: PhysicalAuthor(s): Y.S. Wudil, A. Imam, M.A. Gondal, U.F. Ahmad, Mohammed A. Al-Osta

Electron mass anomalous dimension at <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si1.svg” class=”math”><mi>O</mi><mo stretchy=”false”>(</mo><mn>1</mn><mo stretchy=”false”>/</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo stretchy=”false”>)</mo></math> in three-dimensional <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si2.svg” class=”math”><mi mathvariant=”script”>N</mi><mo linebreak=”goodbreak” linebreakstyle=”after”>=</mo><mn>1</mn></math> supersymmetric QED

Electron mass anomalous dimension at <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si1.svg” class=”math”><mi>O</mi><mo stretchy=”false”>(</mo><mn>1</mn><mo stretchy=”false”>/</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo stretchy=”false”>)</mo></math> in three-dimensional <math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si2.svg” class=”math”><mi mathvariant=”script”>N</mi><mo linebreak=”goodbreak” linebreakstyle=”after”>=</mo><mn>1</mn></math> supersymmetric QED

Publication date: Available online 25 January 2023Source: Physics Letters BAuthor(s): S. Metayer, S. Teber