Purpose:
The aim of this study was to analyze the biomechanical effect of accelerated corneal cross-linking (9*10) in progressive keratoconus (KC) in comparison to untreated fellow eyes using Scheimpflug-based tonometry (Corvis ST, CVS).
Methods:
Forty-three eyes of 43 patients with KC showed progressive KC and were treated using accelerated corneal cross-linking. Twenty-five untreated fellow eyes were used as the control group. All eyes were examined biomechanically (CVS) and tomographically (Pentacam) at baseline, after 1-month, 6-month, and 12-month follow-up. Statistical analysis was performed using a linear mixed model. A logistic regression was performed to attribute the effects of changes in each parameter to treatment status (treated or untreated).
Results:
Maximum keratometry values decreased statistically significantly at 12 months by −1.1 D (95 confidence interval: −2.0 to −0.1, P = 0.025) compared with baseline. Thinnest corneal thickness decreased significantly after 1 month (P 0.05). Logistic regression pointed out that treated eyes can be separated from untreated eyes by differences in bIOP, corneal thickness, A1 velocity, integrated radius, and Kc mean at 1, 6, and 12 months.
Conclusions:
The alterations in biomechanical parameters indicated a corneal stiffening effect after CXL treatment, which was mostly detectable 1 month after treatment, although corneal thickness was reduced. The logistic regression model showed an adequate separation between CXL-treated and untreated eyes.