Red-Light-Induced N,N′-Dipropyl-1,13-dimethoxyquinacridinium-Catalyzed [3+2] Cycloaddition of Cyclopropylamines with Alkenes or Alkynes

A red-light-mediated [3+2] annulation of cyclopropylamines with akenes or alkynes in the presence of N,N′-dipropyl-1,13-dimethoxyquinacridinium is reported. An array of cyclopentane or cyclopentene derivatives with diverse functional groups have been obtained in moderate to excellent yields under mild conditions.

Assemblies of 1,4-Bis(diarylamino)naphthalenes and Aromatic Amphiphiles: Highly Reducing Photoredox Catalysis in Water

Host–guest assemblies of a designed 1,4-bis(diarylamino)naphthalene and V-shaped aromatic amphiphiles consisting of two pentamethylbenzene moieties bridged by an m-phenylene unit bearing two hydrophilic side chains emerged as highly reducing photoredox catalysis systems in water. An efficient demethoxylative hydrogen transfer of Weinreb amides has been developed. The present supramolecular strategy permits facile tuning of visible-light photoredox catalysis in water.

Assemblies of 1,4-Bis(diarylamino)naphthalenes and Aromatic Amphiphiles: Highly Reducing Photoredox Catalysis in Water

Host–guest assemblies of a designed 1,4-bis(diarylamino)naphthalene and V-shaped aromatic amphiphiles consisting of two pentamethylbenzene moieties bridged by an m-phenylene unit bearing two hydrophilic side chains emerged as highly reducing photoredox catalysis systems in water. An efficient demethoxylative hydrogen transfer of Weinreb amides has been developed. The present supramolecular strategy permits facile tuning of visible-light photoredox catalysis in water.

7,10-Dibromo-2,3-dicyanopyrazinophenanthrene Aggregates as a Photosensitizer for Nickel-Catalyzed Aryl Esterification

Self-assembled aggregates of 7,10-dibromo-2,3-dicyanopyrazinophenanthrene which act as a new organophotocatalyst in combination with Ni catalyst for the Caryl–Oacyl cross-coupling reactions of carboxylic acids with aryl halides are described. This visible-light-induced Caryl–Oacyl bond-formation reaction proceeds smoothly to afford aryl esters with satisfactory to excellent yields.

7,10-Dibromo-2,3-dicyanopyrazinophenanthrene Aggregates as a Photosensitizer for Nickel-Catalyzed Aryl Esterification

Self-assembled aggregates of 7,10-dibromo-2,3-dicyanopyrazinophenanthrene which act as a new organophotocatalyst in combination with Ni catalyst for the Caryl–Oacyl cross-coupling reactions of carboxylic acids with aryl halides are described. This visible-light-induced Caryl–Oacyl bond-formation reaction proceeds smoothly to afford aryl esters with satisfactory to excellent yields.

Organic Photoredox Catalysts Exhibiting Long Excited-State Lifetimes

Organic photoredox catalysts with a long excited-state lifetime have emerged as promising alternatives to transition-metal-complex photocatalysts. This paper explains the effectiveness of using long-lifetime photoredox catalysts for organic transformations, focusing on the structures and photophysics that enable long excited-state lifetimes. The electrochemical potentials of the reported organic, long-lifetime photocatalysts are compiled and compared with those of the representative Ir(III)- and Ru(II)-based catalysts. This paper closes by providing recent demonstrations of the synthetic utility of the organic catalysts.1 Introduction2 Molecular Structure and Photophysics3 Photoredox Catalysis Performance4 Catalysis Mediated by Long-Lifetime Organic Photocatalysts4.1 Photoredox Catalytic Generation of a Radical Species and its Addition to Alkenes4.2 Photoredox Catalytic Generation of a Radical Species and its Addition to Arenes4.3 Photoredox Catalytic Generation of a Radical Species and its Addition to Imines4.4 Photoredox Catalytic Generation of a Radical Species and its Addition to Substrates Having C≡X Bonds (X=C, N)4.5 Photoredox Catalytic Generation of a Radical Species and its Bond Formation with Transition Metals4.6 Miscellaneous Reactions of Radical Species Generated by Photoredox Catalysis5 Conclusions

Organic Photoredox Catalysts Exhibiting Long Excited-State Lifetimes

Organic photoredox catalysts with a long excited-state lifetime have emerged as promising alternatives to transition-metal-complex photocatalysts. This paper explains the effectiveness of using long-lifetime photoredox catalysts for organic transformations, focusing on the structures and photophysics that enable long excited-state lifetimes. The electrochemical potentials of the reported organic, long-lifetime photocatalysts are compiled and compared with those of the representative Ir(III)- and Ru(II)-based catalysts. This paper closes by providing recent demonstrations of the synthetic utility of the organic catalysts.1 Introduction2 Molecular Structure and Photophysics3 Photoredox Catalysis Performance4 Catalysis Mediated by Long-Lifetime Organic Photocatalysts4.1 Photoredox Catalytic Generation of a Radical Species and its Addition to Alkenes4.2 Photoredox Catalytic Generation of a Radical Species and its Addition to Arenes4.3 Photoredox Catalytic Generation of a Radical Species and its Addition to Imines4.4 Photoredox Catalytic Generation of a Radical Species and its Addition to Substrates Having C≡X Bonds (X=C, N)4.5 Photoredox Catalytic Generation of a Radical Species and its Bond Formation with Transition Metals4.6 Miscellaneous Reactions of Radical Species Generated by Photoredox Catalysis5 Conclusions

The Versatility of the Aryne–Imine–Aryne Coupling for the ­Synthesis of Acridinium Photocatalysts

The increasing use of acridinium photocatalysts as sustainable alternative to precious metal-based counterparts encourages the design and efficient synthesis of distinct catalyst structures. Herein, we report our exploration of the scope of the aryne–imine–aryne coupling reaction combined with a subsequent acridane oxidation for a short two-step approach towards various acridinium salts. The photophysical properties of the novel photocatalysts were investigated and the practical value was demonstrated by a cation-radical accelerated nucleophilic aromatic substitution reaction.

The Versatility of the Aryne–Imine–Aryne Coupling for the ­Synthesis of Acridinium Photocatalysts

The increasing use of acridinium photocatalysts as sustainable alternative to precious metal-based counterparts encourages the design and efficient synthesis of distinct catalyst structures. Herein, we report our exploration of the scope of the aryne–imine–aryne coupling reaction combined with a subsequent acridane oxidation for a short two-step approach towards various acridinium salts. The photophysical properties of the novel photocatalysts were investigated and the practical value was demonstrated by a cation-radical accelerated nucleophilic aromatic substitution reaction.

Photophysical Properties and Redox Potentials of Photosensitizers for Organic Photoredox Transformations

Photoredox catalysis has proven to be a powerful tool in synthetic organic chemistry. The rational design of photosensitizers with improved photocatalytic performance constitutes a major advancement in photoredox organic transformations. This review summarizes the fundamental ground-state and excited-state photophysical and electrochemical attributes of molecular photosensitizers, which are important determinants of their photocatalytic reactivity.