Palladium-Catalyzed Asymmetric [3+2] Cycloaddition Reaction of Vinyl Cyclopropane with Electron-Deficient Dienes

Palladium-catalyzed asymmetric [3+2] cycloaddition reaction of vinyl cyclopropane and electron-deficient dienes was realized. The cycloaddition reaction proceeded regioselectively on the distant C=C double bond of electron-deficient dienes, and was mainly controlled by the steric hindrance of the 5-substituent of electron-deficient dienes. Chiral multi-substituted cyclopentanes bearing three functional groups (monosubstituted alkene, conjugated ester, and cyano) and three continuous stereocenters were obtained in moderate to high yields, diastereoselectivities, and enantioselectivities.

Synthesis of Fused-Ring Pyrrolizine Derivatives via a Copper-Catalyzed Radical Cascade Cyclization

Herein, an atom-economic method for the synthesis of fused-ring pyrrolizine derivatives by a cycloaddition reaction of easily accessible N-substituted pyrrole-2-carboxaldehydes with N-substituted maleimides in the presence of di-tert-butyl peroxide has been successfully developed. A total of 23 compounds were obtained by using this method, with a maximum yield of 72%, providing a practical and efficient method for the synthesis of tricyclic pyrrolizine frameworks.