Cycloaddition Initiated by Ynolates: High-Energy Dianion Equivalents as a Molecular Glue

In this paper, ynolate-initiated cycloaddition (annulation) to form a range of carbocycles and heterocycles is described. Ynolates consist of a ketene anion equivalent, which contains both nucleophilic and electrophilic moieties, and a carbodianion equivalent that achieves double addition. Hence, in addition to the usual [n+2] cycloaddition, ynolates can perform formal [n+1]-type annulations. Their high-energy performance has been demonstrated by their triple addition to arynes to generate triptycenes, in which the C–C triple bond of ynolates is cleaved. The synthetic applications of these methods, including natural products synthesis, are also described.1 Introduction2 Preparation of Ynolates2.1 Double Lithiation2.2 Flow Synthesis2.3 Double Deprotonation3 [2+2] Cycloaddition to C=O Bond3.1 To Aldehydes and Ketones3.2 Sequential Cycloaddition4 [2+2] Cycloaddition to Imino Groups

Heterocyclic Mechanophores in Polymer Mechanochemistry

This Account covers the recent progress made on heterocyclic mechanophores in the field of polymer mechanochemistry. In particular, the types of such mechanophores as well as the mechanisms and applications of their force-induced structural transformations are discussed and related perspectives and future challenges proposed.1 Introduction2 Types of Mechanophores3 Methods to Incorporate Heterocycle Mechanophores into Polymer Systems4 Mechanochemical Reactions of Heterocyclic Mechanophores4.1 Three-Membered-Ring Mechanophores4.2 Four-Membered-Ring Mechanophores4.3 Six-Membered-Ring Mechanophores4.4 Bicyclic Mechanophores5 Applications5.1 Cross-Linking of Polymer5.2 Degradable Polymer5.3 Mechanochromic Polymer6 Concluding Remarks and Outlook

Heterocyclic Mechanophores in Polymer Mechanochemistry

This Account covers the recent progress made on heterocyclic mechanophores in the field of polymer mechanochemistry. In particular, the types of such mechanophores as well as the mechanisms and applications of their force-induced structural transformations are discussed and related perspectives and future challenges proposed.1 Introduction2 Types of Mechanophores3 Methods to Incorporate Heterocycle Mechanophores into Polymer Systems4 Mechanochemical Reactions of Heterocyclic Mechanophores4.1 Three-Membered-Ring Mechanophores4.2 Four-Membered-Ring Mechanophores4.3 Six-Membered-Ring Mechanophores4.4 Bicyclic Mechanophores5 Applications5.1 Cross-Linking of Polymer5.2 Degradable Polymer5.3 Mechanochromic Polymer6 Concluding Remarks and Outlook