Cancers, Vol. 16, Pages 3752: HDAC6 as a Prognostic Factor and Druggable Target in HER2-Positive Breast Cancer

Background: Adjuvant trastuzumab is the standard of care for HER2+ breast cancer (BC) patients. However, >50% of patients become resistant. This study aimed at the identification of the molecular factors associated with disease relapse and their further investigation as therapeutically exploitable targets. Methods: Analyses were conducted on formalin-fixed paraffin-embedded tissues of the primary tumors of relapsed (cases) and not relapsed (controls) HER2+ BC patients treated with adjuvant trastuzumab. The nCounter Human Breast Cancer Panel 360 was used. Logistic regression and partitioning around medoids were employed to identify the genes associated with disease recurrence. Cytotoxicity experiments using trastuzumab-resistant cell lines and a network pharmacology approach were carried out to investigate drug efficacy. Results: A total of 52 patients (26 relapsed and 26 not relapsed) were analyzed. We found that a higher expression of HDAC6 was significantly associated with an increased risk of recurrence, with an adjusted OR of 3.20 (95% CI 1.38–9.91, p = 0.016). Then, we investigated the cytotoxic activity of the selective HDAC6 inhibitor Nexturastat A (NextA) on HER2+ cell lines, which were both sensitive and trastuzumab-resistant. A sub-cytotoxic concentration of NextA, combined with trastuzumab, showed a synergistic effect on BC cell lines. Finally, using a network pharmacology approach, we identified HSP90AA1 as the putative molecular candidate responsible for the synergism observed in vitro. Conclusions: Our findings encourage the exploration of the role of HDAC6 as a prognostic factor and the combinatorial use of HDAC6 selective inhibitors combined with trastuzumab in HER2+ BC, in particular for those patients experiencing drug resistance.

Cancers, Vol. 16, Pages 3750: Inhibition of K+ Channels Affects the Target Cell Killing Potential of CAR T Cells

Ion channels of T cells (Kv1.3, KCa3.1, and CRAC) participate in the regulation of activation and effector functions via modulation of the Ca2+-dependent pathway. T cells expressing chimeric antigen receptors (CAR T cells) showed a remarkable role in anti-tumor therapy, especially in the treatment of chemotherapy-resistant liquid cancers. Nevertheless, many challenges remain to be overcome to improve the treatment for solid tumors. In this study, we assessed the expression and role of ion channels in CAR T cells. We found that HER2-specific CAR T cells had higher KCa3.1 conductance compared to the non-transduced (NT, control) cells, which was more prominent in the CD8+ population (CD4+ cell also showed elevation). Conversely, the Kv1.3 expression level was the same for all cell types (CD4+, CD8+, CAR, and NT). Single-cell Ca2+ imaging revealed that thapsigargin-induced SOCE via CRAC is suppressed in CD8+ CAR T cells, unlike for CD4+ and CD8+ NT cells. To dissect the functional role of Kv1.3 and KCa3.1, we used specific antagonists (Kv1.3: Vm24; KCa3.1: TRAM-34): the target cell elimination capacity of the CD8+ CAR T cells was improved either by blocking KCa3.1 or Kv1.3. These results imply that ion channels could be a target in CAR T cell immunotherapy elaboration.

Cancers, Vol. 16, Pages 3751: Analysis of the Predictability of Postoperative Meningioma Resection Status Based on Clinical Features

Background: Our aim was to investigate the predictability of postoperative meningioma resection status based on clinical features. Methods: We examined 23 clinical features to assess their effectiveness in distinguishing gross total resections (GTR) from subtotal resections (STR). We analyzed whether GTR/STR cases are better predictable if the classification is based on the Simpson grading or the postoperative operative tumor volume (POTV). Results: Using a study cohort comprising a total of 157 patients, multivariate models for the preoperative prediction of GTR/STR outcome in relation to Simpson grading and POTV were developed and subsequently compared. Including only two clinical features, our models showed a notable discriminatory power in predicting postoperative resection status. Our final model, a straightforward decision tree applicable in daily clinical practice, achieved a mean AUC of 0.885, a mean accuracy of 0.866, a mean sensitivity of 0.889, and a mean specificity of 0.772 based on independent test data. Conclusions: Such models can be a valuable tool both for surgical planning and for early planning of postoperative treatment, e.g., for additional radiotherapy/radiosurgery, potentially required in case of subtotal resections.

Cancers, Vol. 16, Pages 3749: Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia

This review examines the pivotal role of c-MYC in Chronic Lymphocytic Leukemia (CLL), focusing on how its overexpression leads to increased genetic instability, thereby accelerating disease progression. MYC, a major oncogene, encodes a transcription factor that regulates essential cellular processes, including cell cycle control, proliferation, and apoptosis. In CLL cases enriched with unmutated immunoglobulin heavy chain variable (IGHV) genes, MYC is significantly overexpressed and associated with active rearrangements in the IGH immunoglobulin heavy chain locus. This overexpression results in substantial DNA damage, including double-strand breaks, chromosomal translocations, and an increase in abnormal repair events. Consequently, c-MYC plays a dual role in CLL: it promotes aggressive cell proliferation while concurrently driving genomic instability through its involvement in genetic recombination. This dynamic contributes not only to CLL progression but also to the overall aggressiveness of the disease. Additionally, the review suggests that c-MYC’s influence on genetic rearrangements makes it an attractive target for therapeutic strategies aimed at mitigating CLL malignancy. These findings underscore c-MYC’s critical importance in advancing CLL progression, highlighting the need for further research to explore its potential as a target in future treatment approaches.