Cancers, Vol. 17, Pages 1205: Deficiency of MTAP is Frequent and Mostly Homogeneous in Pancreatic Ductal Adenocarcinomas

Background: The complete loss of S-methyl-5′-thioadenosine phosphorylase (MTAP) expression, often due to homozygous 9p21 deletion, creates a druggable vulnerability in cancer cells. Methods: A total of 769 primary pancreatic ductal adenocarcinomas were analyzed on tissue microarrays with MTAP immunohistochemistry (IHC) and 9p21 fluorescence in situ hybridization (FISH). Intratumoral heterogeneity was assessed on a “heterogeneity” TMA containing up to nine samples from different areas of 236 primary tumor and nodal metastases, and whole sections of all tumor blocks from 19 cancers. Results: MTAP expression loss was found in 181 (37.9%) of 478 interpretable primary tumors and was unrelated to pT, pN, grade, and tumor size. MTAP expression loss was homogenous in 37.6% and heterogeneous in 1.1% of the 181 tumors, with at least three evaluable samples on the heterogeneity TMA. On whole sections, 1 of 19 tumors showed heterogeneous MTAP loss. The correlation between IHC and FISH was nearly perfect, with 98.8% of MTAP-deficient samples showing a 9p21 deletion. Conclusions: MTAP expression loss is frequent, caused by homozygous deletion, and mostly homogeneous in pancreatic ductal adenocarcinomas. Considering also their aggressive clinical behavior, pancreatic adenocarcinomas may represent an ideal cancer type for studying new drugs targeting MTAP-deficient cancer cells in clinical trials.

Cancers, Vol. 17, Pages 1204: Distinguishing Hepatocellular Carcinoma from Cirrhotic Regenerative Nodules Using MR Cytometry

Background and Objectives: Current guidelines recommend contrast-enhanced CT/MRI as confirmatory imaging tests for diagnosing hepatocellular carcinoma (HCC). However, these modalities are not always able to differentiate HCC from benign/dysplastic nodules that are commonly observed in cirrhotic livers. Consequently, many lesions require either pathological confirmation via invasive biopsy or surveillance imaging after 3–6 months, which results in delayed diagnosis and treatment. We aimed to develop noninvasive imaging biomarkers of liver cell size and cellularity, using magnetic resonance imaging (MRI), and to assess their utility in identifying HCC. Methods: MR cytometry combines measurements of water diffusion rates over different times corresponding to probing cellular microstructure at different spatial scales. Maps of microstructural properties, such as cell size and cellularity, are derived by fitting voxel values in multiple diffusion-weighted images to a three-compartment (blood, intra-, and extracellular water) model of the MRI signal. This method was validated in two phases: (1) histology-driven simulations, utilizing segmented histological images of different liver pathologies, and (2) ex vivo MR cytometry performed on fixed human liver specimens. Results: Both simulations and ex vivo MR cytometry of fixed human liver specimens demonstrated that HCC exhibits significantly smaller cell sizes and higher cellularities compared to normal liver and cirrhotic regenerative nodules. Conclusion: This study highlights the potential of MR cytometry to differentiate HCC from non-HCC lesions by quantifying cell size and cellularity in liver tissues. Our findings provide a strong foundation for further research into the role of MR cytometry in the noninvasive early diagnosis of HCC.